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Abstract

The response of a quartz crystal microbalance (Q@Wonsidered using a wave
equation for the substrate and the Navier-Stokesmteans for a finite liquid layer
under a slip boundary condition. It is shown thaew the slip length to shear wave
penetration depth is small, the first order efigicslip is only present in the frequency
response. Importantly, in this approximation theqfrency response satisfies an
additivity relation with a net response equal t&anazawa liquid term plus an
additional Sauerbrey “rigid” liquid mass. For tHg dength to result in an enhanced
frequency decrease compared to a no-slip boundengition, it is shown that the slip
length must be negative so that the slip planeod¢ated on the liquid side of the
interface. It is argued that the physical applamaf such a negative slip length could
be to the liquid phase response of a QCM with aptetaly wetted rough surface.
Effectively, the model recovers the starting asdionpof additivity used in the
trapped mass model for the liquid phase response@EM having a rough surface.
When applying the slip boundary condition to thegio surface problem, slip is not at
a molecular level, but is a formal hydrodynamic taary condition which relates the
response of the QCM to that expected from a QCM witsmooth surface. Finally,
possible interpretations of the results in term@aodustic reflectivity are developed
and the potential limitations of the additivity uésshould vapour trapping occur are

discussed.
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l. Introduction

A quartz crystal microbalance (QCM) responds to @rsion in a liquid via changes
in its resonant frequency and damping. These ensgpge and energy dissipation
effects are sensitive probes of the interface betwtbe crystal and the liquid. The

interfacial region is defined by the viscous emmaent of liquid within a penetration
depthd = (2/7f /apf )]/therenf is the viscosityp is the density andc = 27f is the

angular frequency. It has long been known thatyatal with a rough surface has an
excess liquid phase response, primarily in its fesgy decrease, compared to that
predicted by the Kanazawa and Gordon equéfionOne suggested method of
accounting for this response has been to view #spanse as composed of a
Kanazawa ternf accounting for the entrainment of the liquid ptuSauerbrey rigid
mass type term with the mass being given by théadiftrapped” within the surface
structure of the crystaf'® The assumed additivity of these terms has been th
starting point of the model and has not been dyretdrived from any wave equation
for the system. It has also been shown experinlgntdlat the state of
hydrophobicity/hydrophilicity of the surface of &0 can influence its resporise™
even when the surface is relatively smddite. surface features of depth <0j0%).
The discussion of excess response due to rouglhasssat times inevitably, become
entangled with the state of wetting of a surfacd paossible interfacial slip at the
molecular level™. This present report does not argue for or aga@itter a
dominantly roughness induced response or a partiadblecular slip induced
response. However, we believe that whether molealip can occur in the liquid
phase response of a QCM and whether its effectbeaseparated from a roughness
induced response is a valid issue, particularlymthealing with surfaces chemically

modified for biosensing experiments. It is therefextremely important to recognize



that a slip boundary condition is a precise mathmalacondition, which can lead to
specific predictions that can be tested againstaamynalous response observed in an

experiment.

The concept of interfacial slip is precisely defingn terms of a slip boundary
condition, which gives a discontinuity between Hu#id and liquid velocities at the
interfacé”™* earlier attempts at devising models to describssiple molecular slip
occurring in QCM'’s included a complex slip param€tend an interfacial layer
modef®. To create a mathematical relation for a slip laup condition does not
assign a physical origin to the slip parameterore sense a slip parameter may be a
mechanism to account for a diffuse interface, whilsanother it may relate directly
to a discontinuity of the first molecular layertbg liquid. In this article, we consider
the relationship between load impedance derivet waitd without a slip boundary
condition. We neither prove nor disprove the exiseeof molecular slip in the liquid
phase QCM response. A key focus of the articl@iaddress the application of the
slip boundary condition to model the response wdenystal with a rough surface is
immersed in a Newtonian liquid; the use of a slyitdary condition in this situation
does not necessarily imply slip is occurring in finst molecular layer of liquid. We
show rigorously that under the condition that agtosurface is completely wetted by
a liquid, a slip boundary condition can, under appiate conditions on the size of
roughness, result in the additivity of a Kanazawd &ordon term with a Sauerbrey
trapped liqguid mass term for the frequency respomsefirst order the motional
resistance, representing dissipation, is indepdndethe roughness. The model is
developed in terms of a liquid layer of finite tkiess rather than simply an infinitely

deep Newtonian liquid. The mathematical developnwnhis model is given in a



fully self-contained manner in section Il with theecessary experimental
consequences of the model in sections llla and Plbssible limitations in the 1-
dimensional nature of the model of the substrateiarextending the additivity to the
case of trapped air/vapour in surface featureslis@issed in the context of acoustic
reflectivity of the solid-liquid and solid-air intece in sections llic and llld. The
situation of partial penetration of liquid into fage features is relevant for

hydrophobic or partially wetting QCM surfaces.

Il. Theory

lla. Wave Equations

A first principles model of the response of a sthdQCM to loading by a finite liquid
layer (fig. 1) can be obtained by setting up anemesally 1-dimensional wave
equation for the substrate of thicknessand the Navier-Stokes equations for the
liquid layer of thicknessl. The equations can be solved and boundary conditio
applied at the various interfaces to obtain theldements or speed of motion of
both the substrate and the layer. Several routethan possible to obtain the effect of
the layer on the resonant frequency and dampirtheosubstrate. In the first case a
load impedance method, which relates the sheassstrethe substrate speed at the
interface, can be us€dAlternatively a perturbation expansion can bepaed about
the resonant frequency of the unloaded sub$fraéther method is possible, and
both should provide the same results, although nmexperimental studies use the

formalism of the load impedance method.

The Navier-Stokes equation for a Newtonian ligarmd assuming continuity and

incompressibility, has an equation for fluid flow,
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where o is the density of the fluidgy is the viscosity of the fluidy; is the fluid
velocity, wis the angular frequency and a time dependefitéas been assumed.

The substrate displacemeantmust satisfy the wave equation,

D%u. = -2 u (2)

1/2

wherec=(u/ps) " is the intrinsic shear speed of the substrate maatetermined by

its shear modulugs and densityps. Solutions to these equations of motion can be
sought using velocity and displacement functionthefform,
Vi =(vi (2€'“ 00) 3
and
us = (us(2€“* 00) @)
Because the substrate is smooth the displacemant, (4, is essentially 1-
dimensional. Substituting Egs. (3) and (4) into .Hd3 and (2) and recognising that
the general solutions are composed of exponemjiaés general solutions,
Vi (2) = A¢ exp{ikf z)+ B¢ exp{—ikf z) (5)
and
us(2) = A expliksz) + Bg exp(-iksz) (6)
where thek vectors are given by=(-2)¥%¢ and k=alcs and theA and B; are

constants determined by boundary conditions andflthé wave vector has been

written using the shear wave penetration dei)th(2/7f /apf )]/2.



To convert from a general solution to a specifituson boundary conditions must
be imposed at the upper and lower free surfaceatrtie interface between the
substrate and the layer. Only the latter of theselitions depends upon the slip or
no-slip boundary condition and we, therefore, fdetelop the form of the solution
using the boundary condition of vanishing sheagsstrat the upper and lower free

surfaces of the substrate-fluid layer system, i.e.

il =0 7
7 (;JZ:d = (7)
and
Ag _
'US(EJZ:—W =0 (8)

Using Egs. (4) and (5) in Eqgs. (7) and (8) deteamitwo of the four constants, B,

As, andBs, so that the solutions become,

Jaid
)

Vi (2) = 2A¢ ex;{ ]COS{@} (9)

and

us(2) = 2Ag exp- iksw)coe[ks(z + W)] (10)

The relationship between the two remaining constanandAs is determined by the
boundary condition still to be imposed at the swbstfluid layer interface. It is
interesting to note that due to the complex argurethe cosh(), whether or not a
slip boundary condition is chosen, the fluid vetpavill have a damped oscillation
representing viscous entrainment with a penetratitm the (fluid) layer set by the

shear wave penetration depth The derivations in this section can be extended



the case of a substrate coated by a viscoelaye; laoth of the cases of slip of a
liquid or a solid layer on a QCM surface can then dbtained by taking the
appropriate limits. For completeness, the key eguostfor a derivation for the

viscoelastic case are given in appendix A.

lIb. Surface Mechanical Impedance

To obtain the usual Kanazawa and Gordon, and Saayedgjuations we could now
develop a perturbation expansion about a vanishimgkness liquid layer. The
alternative, we adopt here, is to use the surfa@ehamical impedance of the fitff®

Z,, defined by,
Fy
7 =|— (11)
Vs Jz=0
whereF; is the shear force exerted by the film on the sabs per unit area and is

given by the shear stress,

de
-
dz =0

In a linear approximation the relationship betwdabe load impedance and the

angular frequency shift and dissipation are given b

Aew=—1 Im[z, ] (13)
S
and
AD=—2_Rdz,] (14)
wPsW

The dissipationAD, can be related directly to the motional resistais, and the

substrate thickness determines the resonant fregugsw=mric/w with m=1 giving



the fundamental frequency of the QCM. Using Eg3%-(12) an expression can be
developed for the impedance in the following fotmattis not specific to whether a

slip or no-slip boundary condition is to be applied

sinr{ﬁdj
_ 1o (A . J2id 5
Z =-i ” [Ejex ikgw + 5 - s(ksw) (15)

Thus, the surface load impedance is proportionat 18s so that the sensitivity to the
precise boundary condition at the substrate-flaicet interface enters the impedance
through the relationship betweén andAs. Appendix A gives the analogous results

for a finite viscoelastic layer.

llc. Substrate-Layer Interface Boundary Conditions

No-Slip Boundary Condition

The no-slip condition imposes the condition thaidlvelocity and substrate velocity
should be equal at the boundary between the stdbstna the layer; equivalently the
displacements can be matched. Using Egs. (9) d@yda(ld setting:(z=0)=i cus(z=0)

gives,

ATOSIP = ex —i|<sw+*/zOI cogkw) Anosip (1)
° COS{\/Ed:|

o

where the superscripto dslip has been introduced to remind us that the no-slip
boundary condition has been used to determineeiagéianship between the constants

As andAs. Using Eqg. (15) we then obtain the impedance,



er_losnp = \Jiwo tan{\/z_dld} (17)

Slip Boundary Condition
In an earlier report we used a slip boundary camitntroduced by Rodahl and
Kasemd’ (see also McHalet al*®) which related the mis-match in speeds at the

boundary between the substrate and the layer tehib@r stress at the boundary, i.e.
Xy (vs(2 = 0) = v¢ (2= 0)) = Fy (18)

wherey is the coefficient of friction between the filmdthe surface anahy, is the

mass per unit area of a monolayer of the filmhie ¢arlier repotf we introduced an

s factor defined ass=1/ymu.. In contrast, Ellis and Haywart have recently

introduced a slip length defined by the boundary condition,

Vs(z=0) =vy (2= —b) (19)

Performing a Taylor expansion of Eq. (19) akmx@ gives,
de
Vg(z=0)-Vv;(z=0)=-b — (20)
dz |__
z=0
and with the definition oF; used in Eq. (12) this gives,

M z=0-v; z=0]=F; (21)

Comparing Eqg. (21) to Eq. (18) we deduce #¥di77;. The relationship between the

fluid layer velocity gradient extrapolated from thelk and the slip length is shown
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diagrammatically in fig. 2. The slip boundary cdm@h Eq. (18) can therefore be
regarded as a first order approximation to the Istipndary condition in Eg. (19) so
that the two slip boundary conditions are consistdth each other. In the case of a
viscoelastic rather than a liquid layer, the eqi@rtrelation forsis s=i ab/G;, where

Gt is the complex shear modulus (see appendix B).

Applying the Ellis and Hayward slip boundary condition (Eq. (19)) to Egs. (9) and

(10) gives,
dip _ . _\/Ed CoikSW) dlip
AL woex;{ iksw 5 OS{M} AT (22)
o

which differs from the no-slip case only by a shiftd by b in the cosh() term in the
denominator of Eq. (22). Using the definition oéthurface mechanical impedance

we obtain,

(75

gi
z>P = (23)

o

which reduces to the no-slip result whes0.

In the case that the dimensionless combinationaci@rsing the influence of slip

b/dis small, the cosh() can be expanded as,

cos{—\/z(d +b) J = cos?{ﬁ d j{ﬂ V2 tan}{@H (24)
o 1) 1) 1)

and the impedance, Eqg. (23), becomes

11
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slip _
1+ \/Ebtan V2id
o o
Eqg. (25) can be re-written in the form,
_ Znos:lip
dip _ L
ZL - b nodlip (26)
1+—27,
R

The factorb/7; in the denominator of Eq. (26) is the slip factowe have previously
derived Eq. (26)using a harmonic oscillator substrate model codgd general
finite viscoelastic layer and have shown that it ba interpreted using a single-loop
feedback modé&f; this equation can also be derived from the geneterfacial layer
approach of ref [18]. Appendix B gives the analagoesults for a viscoelastic layer

and hence includes both the solid and liquid limits

1. Discussion

[lla. “Liquid” Mass Layer Additivity

The idea of a “rigid” liquid mass added to a Kanveadype entrained liquid response

is implicit with Eqg. (26). To show this rigorousiye expand Eqg. (26)

dip _ 5 nosi b _nosi
z}P =27 p[l_EZL p} (27)

and consider the layer to be an infinitely deep téevan fluid, so that Eq. (17) gives
2[°9P = fiwpqn (28)

Since (2)Y2=1 +i, Eq. (27) becomes,

12



z8P = @+i) ap;’“ [1— (1;:)b1/ap;'7f J (29)

which after expanding, grouping terms into real anshginary and using the

definition of the penetration depth gives,

Zflip _ | wPil 1+i(1_2_bj (30)
2 o

Another view of Eqg. (30) is that the impedance &or infinitely deep Newtonian
liquid using the slip boundary condition, contathe Kanazawa result assuming a
no-slip boundary condition plus an additional impece equal toieyb; the
analogous result for a thin layer of rigid masgiigen appendix C. The real part of
the impedance, Eq. (30), gives the dissipationtdu®e liquid and since it does not
include a slip correction factor it is relativelgsensitive to the slip length in this
approximation of smalb/d. In contrast, the imaginary part of the impedandaich
determines the frequency shift, has a correctiartofainvolving the slip length
parameter. Using Eqg. (13) and the fundamental sssmn conditionrw=Tvd @, EQ.

(30) gives,

()8 a5 @
w dip w nodip o

(A_a)j __1 |wpsy (32)
W Jnodip T\ 2psHs

Combining Eq. (32) with the additional factds/@occurring in Eq. (31) gives,

aAm
(A_‘Uj = (_ Z_bJ(A_wj = f (33)
W J additional ON w nosip &/ HsPs

where

13



where Am=bg has been defined. Equation (33) is of the Saugrbvem for a
frequency shift due to a rigid “liquid” mass perituarea deposited on a smooth
substrate (quartz crystal); for the case of a thass layer given in appendix C the
additional term is not of a mass type form andxizeeted to be a small correction to
the Sauerbrey result. Equation (30) predicts a damii first order effect in the
frequency shift rather than the dissipation, bt eonversion of the shear motion in
the liquid into non-shear motion by, for examphkeosg roughness or oblique angles
in the surface roughness or topography, is likelygénerate compressional waves

and hence significant damping of the QCM.

One difficulty with the additional mass interprédat of Eq. (33) would be that a
positive value fob would give a frequency increase, whereas the addess of the
Sauerbrey form should give a frequency decreas@odgitive value for the slip
parameteb places the slip plane into the solid side of thaeraary whilst a negative
value places the slip plane out into the liquidesaf the boundary (see fig. 2).
Diagrammatically, Egs. (31)-(33) mean that the detpy response of a smooth
crystal (substrate) with a slip boundary condité a negative slip parameber-|b|
can be viewed as the sum of the effect of liquitla@nment using a no-slip boundary
condition plus a “rigid” mass layer of thicknebfdnd densityx (see fig. 3). Given
some of the confusion that exists in the literatbmeacoustic wave sensors and slip,
it should be emphasised that the development oéduations so far in this work has
no physical meaning beyond the mathematical cawditf a discontinuity in the
substrate and liquid velocities at the solid-liquidterface. Should such a
discontinuity occur by some physical mechanism,tivreit be a diffuse interface or

true molecular slip, the equations so far develogbduld describe the QCM
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response. However, we would emphasise that thdt sesumarized by Eq. (30) is a
first order approximation and it may be necessaryde the earlier results prior to

the expansions via Egs. (24) and/or Eq. (27).

llIb. Negative Slip Length and Trapped Mass

Taking the slip length to be negative, the effettEq. (33) is to enhance the
frequency decrease that is observed compared ystans withb=0. Eg. (30) also
shows that the existence of a slip parameter das ta first order, alter the
dissipation of the QCM compared to what would bpested for a crystal immersed
in a liquid if the slip parameter vanished. Thesedfctions are consistent with
experimental results for immersion of a QCM witkraall order rough surface in a
wetting liquid, which give an enhanced frequencgrdase, but little change in the
motional resistance compared to a QCM with a smeatfacé®. These features in
the experimentally observed response correspotidetdype of behaviour expected
with a negative slip parametbr In fact, Martin has previously argued on physical
grounds that the effect on the response of a QCMildvde primarily in the
frequency response and that this can be modellading an additivity between the
Kanazawa liquid response and a Sauerbrey termsemiag the trapped mass of
liquid (see ref 13 and references therein). Thelirement to be satisfied for this to
occur, is that the lateral scale of the surfaceghoess should be less than the
penetration depth; otherwise the trapped liquid may act as a rigid mass. The
result in Egs (31)-(33) would support the addifiviergument, and provide an
indication of under what circumstances this argummeight fail. For larger length
scales of roughness, mode conversion and enhararaginy are more likely to

occur and the model in section Il would not thendppropriate. Moreover, the
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results in section Il do not necessarily imply thaughness accounts for all
experimental data that show anomalous responses.f@ther requirement to be
able to match the application of a slip boundanmydition to the response of a rough
QCM, to the trapped mass argument for such a QCNb iprovide a physical

argument for the magnitude and sign of the sligpeaterb.

llic. Slip Length and Interfacial Boundary

The mathematical development for the response ®fQEM uses an essentially 1-
dimensional model, whereas surface roughness ogtaphic structuring introduces
a two-dimensional aspect to the problem as th&uieiss of crystal varies with lateral
position. In this sub-section we consider how #wults for such a QCM surface, for
small height variations compared to the crystatkhess, might be interpreted using
the results of the essentially 1-dimensional mo@ehsider fig. 3, but now imagine
that the true QCM surface is rough. For simplicie show in fig. 3 a dotted line
giving a step type “roughness” variation in the ipos of the QCM surface with
equal lengths for the low and high positions (1:arkrspace ratio). The average
position of the surface is the solid horizontaéletz=0 and the surface features vary
from -A to +A. If we now immerse the QCM then each corrugatibriepth A
would contain trapped liquid. Within the slip boamg condition model we can
imagine that this liquid is spread out across eagfiace feature as a mass layer of
thicknessA (fig. 4b). The net effect is that the average fimsiof the interface
moves towards the bulk liquid by a distankeFor this particular geometry, we
would argue that the slip paramebewould therefore be negative and of magnitude
A. A similar argument could be made for any oth@etpf model surface roughness,

such as a sinusoidally varying surface, and soskd to determine the slip parameter
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magnitude. This interpretation of a negative shpgmeter means that the application
of the slip boundary condition to this problem afrface roughness does not
represent molecular slip, but does show that alspndary condition can convert
the response of a QCM with a rough surface inte@urivalent response for a QCM
with a smooth surface. There is nothing in thistipalar application of the slip
boundary condition that would preclude its use ko alescribe molecular slip,
although we would expect that molecular slip wordduire a positive slip length

parameteb.

Illd. Acoustic Reflection Considerations

The slip model matches boundary conditions at tie4iquid interface and, with a
negativeb, merely moves the position of that interface awtards the liquid by a
constant amount; this is illustrated in fig. 4a digd 4b. When a QCM is in air (fig.
4a) the acoustic wave in the substrate will undegglections from both the peaks
and troughs of the QCM’s corrugated upper surfdugs defining two characteristic
resonant cavity lengths. Each of these cavitidsdefine resonances of the crystal
and so give two different resonant frequenciesvideal the depth of the surface
features is small, adding the waves giving theseregonances will give an average
resonant frequency modulated by a low frequenciatian. In effect, we could view
the QCM’s upper surface as having an average caftneflection so that the
substrate thickness v& In fig. 4a the path of the acoustic reflectiorsi®wn by the
dotted vertical arrow and this determines the rasbifrequency. When the rough
surface is completely wetted the acoustic reflégtiof the upper solid surface of the
QCM is the same irrespective of whether the hot&lohocation K-position)

corresponds to a peak or a trough in the surfaceugation/roughness. We can
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imagine the trapped liquid mass being spread inifaum film of thicknessH| across
the peaks and troughs of the QCM'’s upper surfage4b). This results in an overall
and uniform shift in the average centre of acoustitectivity towards the bulk
liquid phase by an amourd.| The path of the acoustic reflection therefoiaases
as shown schematically by the solid vertical arnoviig. 4b. An effective increase in
the acoustic thickness of the substrate causedhdoywniformly spread out trapped
mass would be expected to result in a larger reddraf-wavelength and so a lower
resonant frequency. This particular conclusioroisdme extent speculative, but the
change in viewpoint to acoustic reflectivity doesphidentify a possible implicit

assumption in the trapped mass model additivitgntda (Eq. (31)).

The explicit limitation on the applicability of EgE1)-(33) to rough surfaces is that
b/éd be small. However, it is also assumed that thelehhds independent of the
particular point along the direction, i.e. that a damped shear wave osa@ltainto
the liquid begins at the average position of thp plane no matter what position
along thex-direction is considered. For surface roughnessfes which are closely
spaced this is likely to be true, but as they bexdunther apart it is an assumption
likely to fail. A further implicit assumption is #t the liquid maintains contact with
the surface features across the QCM, i.e. the aitacompletely wetted; if it does
not the surface reflectivity may become a functarposition along the interface.
One interesting question that arises is whetheowagpped in surface features
could be accounted for simply by using Egs. (3B),(But modified by reducing the
amount of “trapped” liquitf. It is not clear from the slip boundary conditiomodel
whether the additivity of “liquid” mass will stilbe valid if this partial penetration by

liquid occurs. The slip model matches boundary dans at the solid-liquid
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interface and merely moves the position of thatriiaice out towards the liquid by a
constant amount. Figures 4a) and 4b) are an att@mpterpret this movement in
terms of acoustic reflections and lead to the ifieation of an important implicit
assumption. If vapor trapping due to incompletetwgtoccurs, acoustic reflections
from the troughs of the surface features will be do a solid-air interface whilst
those from the peaks will be due to a solid-liquiterface. Since the acoustic
reflectivity of the solid-air interface is signifiatly higher than that of a sold-liquid
interface, this may limit the slip model assumptibiat all positions along the
direction see an effective slip parameter of theesaalue; this could be a particular
problem if the reflection was dominated by surfaceighs which possessed a solid-
vapor interface. In such circumstances, the uglidli the additivity result (Eq. (31))
may be questionable and the trapped mass viewpwgtnot then be applicable, in
some circumstances, to hydrophobic rough surfades potential complexity of this
effect is one reason why we have qualified theltesu section 1l of this article to be

applicable to the complete wetting case.

V. Conclusion

A slip boundary condition has been implementedtheawave equations for a QCM
covered with a finite liquid layer. The responsetltd QCM on immersion in water
assuming a slip length, has been obtained and to first ordel/id, and assuming no
mode conversion, it has been shown that the fregueesponse can be viewed
rigorously as a liquid response with an additioc@inponent due to a “rigid liquid”

mass; to first order the slip boundary conditioreslcnot change the dissipation
beyond what would be expected from a no-slip bogndandition. For the “rigid

liquid” mass to enhance the frequency decreaseslthdength must be negative so
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that the slip plane is located on the liquid siflehe average surface of the QCM. It
has been argued that the slip boundary conditiadh winegative slip length could
model the liquid response of a QCM with a roughfame. In this application of the
slip boundary condition the results of the moded aqguivalent to a trapped mass
model provided the liquid wets the whole of the glousurface. The possible
importance of vapor trapping altering acoustic eetlity of wetted versus non-
wetted portions of the interface has been ideutjfialthough it remains unclear
whether this could invalidate the trapped mass rasgu for hydrophobic rough

surfaces.
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Appendix A — Fluid Velocity and Impedance for a Vigoelastic Layer

In this appendix we outline the key changes to Efs(9) required to obtain the fluid
velocity when the fluid is regarded as a visco&alstyer rather than a Newtonian
liquid. In the case of a viscoelastic layer, thevzidaStokes equation for the fluid (Eq.
(1)) is modified to

Gf 2 .
—0 Vi =lavy (A1)
&t

whereGs is the complex shear modulus and has liquid ahd Bits of iy and 4.

Within the equation for the fluid velocity (Eq. §3he wavevectok: becomes,

ks :g (A2)

where the complex penetration depth is defined by,

5= | 2o (A3)
|,0fa)2

which in the liquid limit becomes equal to the Usstaear wave penetration depth.

The boundary condition Eq. (7) becomes,

Gs (A
_fE_f) ~0 Ad)

The solution for the fluid velocity (Eg. (9)) becem

Vi (2) = 2A¢ exp{%} cos{@} (A5)

In the evaluation of surface mechanical impedarte shear stress (Eq. (12))

becomes,

£ = —Gf de
PR (AB)
iw \ dz ) _,
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so that the general form for the impedance (Eq)) (i&comes,

— sin}{@dJ
7, =i 2! [EJ(ﬁJex ks Y2 0 (A7)
w () A 5 ) codkew)

The key differences in Eq. (A7) compared to Eq.) (A the replacement of the

penetration depth by the complex penetration daptine exp() and sinh() factors
and the inclusion of a factor which is the ratio aamplex penetration depth to
penetration depth. Equation (A7) is a general fortihe sense that it has not yet had

a boundary condition imposed at the substrate-leyerface.
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Appendix B — Slip Length Parameter and a Viscoelagt Layer

In this appendix the effect of the slip boundarydition on a viscoelastic layer is
detailed. In the no-slip boundary condition case télation between th&; and As

coefficients (Eq. (16), becomes,

A?Os”pziwex;{—iksw*@d coskw) Anosip - (gy)

cos{\/z__id}
i o

which gives the impedance,

[P = fiaprnq (gjtan{\@;d} (B2)

The equivalent results derived by imposing the Hagvand Elli&’ slip boundary

condition (Eqg. (19)) are,

lip _ - . Jaid codksw) dip
A |a)exL{ ikgw 5 Os{ﬁ(d +b)} A (B3)
)

and

Z}P = . (84)
cos J2i (d +b)
o
Expanding the denominator we obtain
i noslip
z3P = L (B5)
1+ Sznosllp

23



wherez, %" andz,™ 5P are defined by Eq. (B2) and (B4) and thearameter for the

viscoelastic layer is given kszi ab/G;,

s=— (B6)

We note that the McHalet al*® and Ellis and Hayward slip boundary conditions
can be related from the Taylor expansion Eqg. (2@) the shear stress Eq. (A6) and

that doing so gives Eq. (B6).
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Appendix C — Slip Parameter and Thin Rigid Mass Limt
In the case of a thin “rigid” mass layer we findrfr appendix B,
ZM°9P < jgp;d (C1)

which is the Sauerbrey mass response and expatiigngenominator in Eq. (B5)

gives,

(C2)

- «bp; d
Zf'pziwpfd{l— ﬂff

whereys is the solid limit of the shear modul@s Thus, the usual Sauerbrey response
is modified by an additional term. To gain insighto the additional term in Eq. (C2),

we can rewrite Eq. (C2) as,

cedi3f] o

where the wavelength in the fluid has been defased

/]f :2_7T 'u_f (C4)
w \ ps

For small slip length and layer thickness compaeethe wavelength (Eq. (C4)), Eq.

(C3) shows that the correction to the Sauerbrewtguis small.
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Figure 1

Figure 2

Figure 3

Figure 4

Figure Captions

Definition of axes for quartz crystal swate with a liquid overlayer.

Extrapolation of fluid speed gradient froime bulk liquid and the

relationship to the slip parameter

Diagrammatic interpretation of Eqgs. (333)( The frequency response of a
smooth QCM to immersion in water is treated by #lg@ boundary
condition as a perfect liquid entrainment by a sthawvystal with a no-slip
boundary condition plus an additional componentaét a layer of “rigid

water” of thicknessbh|]. The dotted lines indicate a hypothetical “rough

surface whose average position lieg=l.

Trapped mass viewed as a movement ofubigge centre of reflection of
the QCMs upper surface. a) The unloaded QCM hasa@nant frequency
determined by the acoustic reflection shown thetedotarrow, b) the
trapped liquid mass in the surface features is @tkwas increasing the
thickness of the substrate at both the trough aedt @ositions of the
roughness by an equal amoilmand so increasing the effective reflection

path by | as shown by the solid arrow.
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McHaleet al, “Surface Roughness and Interfacial Slip Bound2ondition for Quartz Crystal Microbalances”

Figure 1 Definition of axes for quartz crystal swate with a liquid overlayer.

L.,

Layer (liquid)

Substrate (crystal)

z=+d



McHaleet al, “Surface Roughness and Interfacial Slip Bound2ondition for Quartz Crystal Microbalances”

Figure 2 Extrapolation of fluid speed gradient frtma bulk liquid and the relationship to the slargmeteb.

z
A
-
_>.5‘..
_>:.'..
_>:.'..
z=0 > Vi
z=-b
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McHaleet al, “Surface Roughness and Interfacial Slip Bound2ondition for Quartz Crystal Microbalances”

Figure 3 Diagrammatic interpretation of Egs. (333)( The frequency response of a smooth QCM to irsime in water is treated by the slip
boundary condition as a perfect liquid entrainmmsnt smooth crystal with a no-slip boundary conditplus an additional component
equal to a layer of “rigid water” of thicknedy.|The dotted lines indicate a hypothetical “roughtface whose average position lies at

z=0.

Liquid acting
Layer (liquid) as rigid mas
v N v
A o fre e — zz0 - | — 1 |b]
Substrate (crystal) Substrate (crystal) Substrate (crystal)
slip boundary condition no-slip boundary condition rigid “water” mass layer
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McHaleet al, “Surface Roughness and Interfacial Slip Bound2ondition for Quartz Crystal Microbalances”

Figure 4 Trapped mass viewed as a movement of ubege centre of reflection of the QCMs upper s@faa) The unloaded QCM has a
resonant frequency determined by the acousticatele shown the dotted arrow, b) the trapped liquigks in the surface features is
viewed as increasing the thickness of the subsatabeth the trough and crest positions of the lhoegs by an equal amounand so

increasing the effective reflection path blyds shown by the solid arrow.

a) b) , , ,
T oo e e T SSORY rrers SOUONN reven BSOS e o
W Substrate (crystal) w+b|  substrate (crystal)
| NI ,,
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