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Abstract 
 

The response of a quartz crystal microbalance (QCM) is considered using a wave 

equation for the substrate and the Navier-Stokes equations for a finite liquid layer 

under a slip boundary condition. It is shown that when the slip length to shear wave 

penetration depth is small, the first order effect of slip is only present in the frequency 

response. Importantly, in this approximation the frequency response satisfies an 

additivity relation with a net response equal to a Kanazawa liquid term plus an 

additional Sauerbrey “rigid” liquid mass. For the slip length to result in an enhanced 

frequency decrease compared to a no-slip boundary condition, it is shown that the slip 

length must be negative so that the slip plane is located on the liquid side of the 

interface. It is argued that the physical application of such a negative slip length could 

be to the liquid phase response of a QCM with a completely wetted rough surface. 

Effectively, the model recovers the starting assumption of additivity used in the 

trapped mass model for the liquid phase response of a QCM having a rough surface. 

When applying the slip boundary condition to the rough surface problem, slip is not at 

a molecular level, but is a formal hydrodynamic boundary condition which relates the 

response of the QCM to that expected from a QCM with a smooth surface. Finally, 

possible interpretations of the results in terms of acoustic reflectivity are developed 

and the potential limitations of the additivity result should vapour trapping occur are 

discussed. 

 

Keywords: Acoustic waves, quartz crystal microbalances, sensors, slip, contact 

angles, wetting. 
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I.  Introduction 

A quartz crystal microbalance (QCM) responds to immersion in a liquid via changes 

in its resonant frequency and damping. These energy storage and energy dissipation 

effects are sensitive probes of the interface between the crystal and the liquid. The 

interfacial region is defined by the viscous entrainment of liquid within a penetration 

depth ( ) 212 ff ωρηδ = where ηf is the viscosity, ρf is the density and fπω 2=  is the 

angular frequency. It has long been known that a crystal with a rough surface has an 

excess liquid phase response, primarily in its frequency decrease, compared to that 

predicted by the Kanazawa and Gordon equation1-13. One suggested method of 

accounting for this response has been to view the response as composed of a 

Kanazawa term14 accounting for the entrainment of the liquid plus a Sauerbrey15 rigid 

mass type term with the mass being given by the liquid “trapped” within the surface 

structure of the crystal1,8,13. The assumed additivity of these terms has been the 

starting point of the model and has not been directly derived from any wave equation 

for the system. It has also been shown experimentally that the state of 

hydrophobicity/hydrophilicity of the surface of a QCM can influence its response5,9,11 

even when the surface is relatively smooth9 (i.e. surface features of depth <0.05 µm).  

The discussion of excess response due to roughness has, at times inevitably, become 

entangled with the state of wetting of a surface and possible interfacial slip at the 

molecular level9-11. This present report does not argue for or against either a 

dominantly roughness induced response or a partially molecular slip induced 

response. However, we believe that whether molecular slip can occur in the liquid 

phase response of a QCM and whether its effects can be separated from a roughness 

induced response is a valid issue, particularly when dealing with surfaces chemically 

modified for biosensing experiments. It is therefore extremely important to recognize 
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that a slip boundary condition is a precise mathematical condition, which can lead to 

specific predictions that can be tested against any anomalous response observed in an 

experiment. 

 

The concept of interfacial slip is precisely defined in terms of a slip boundary 

condition, which gives a discontinuity between the solid and liquid velocities at the 

interface17-19; earlier attempts at devising models to describe possible molecular slip 

occurring in QCM’s included a complex slip parameter16 and an interfacial layer 

model20. To create a mathematical relation for a slip boundary condition does not 

assign a physical origin to the slip parameter. In one sense a slip parameter may be a 

mechanism to account for a diffuse interface, whilst in another it may relate directly 

to a discontinuity of the first molecular layer of the liquid. In this article, we consider 

the relationship between load impedance derived with and without a slip boundary 

condition. We neither prove nor disprove the existence of molecular slip in the liquid 

phase QCM response. A key focus of the article is to address the application of the 

slip boundary condition to model the response when a crystal with a rough surface is 

immersed in a Newtonian liquid; the use of a slip boundary condition in this situation 

does not necessarily imply slip is occurring in the first molecular layer of liquid. We 

show rigorously that under the condition that a rough surface is completely wetted by 

a liquid, a slip boundary condition can, under appropriate conditions on the size of 

roughness, result in the additivity of a Kanazawa and Gordon term with a Sauerbrey 

trapped liquid mass term for the frequency response; to first order the motional 

resistance, representing dissipation, is independent of the roughness. The model is 

developed in terms of a liquid layer of finite thickness rather than simply an infinitely 

deep Newtonian liquid. The mathematical development of this model is given in a 
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fully self-contained manner in section II with the necessary experimental 

consequences of the model in sections IIIa and IIIb. Possible limitations in the 1-

dimensional nature of the model of the substrate and in extending the additivity to the 

case of trapped air/vapour in surface features are discussed in the context of acoustic 

reflectivity of the solid-liquid and solid-air interface in sections IIIc and IIId. The 

situation of partial penetration of liquid into surface features is relevant for 

hydrophobic or partially wetting QCM surfaces. 

II.  Theory 

IIa.  Wave Equations 

A first principles model of the response of a smooth QCM to loading by a finite liquid 

layer (fig. 1) can be obtained by setting up an essentially 1-dimensional wave 

equation for the substrate of thickness w and the Navier-Stokes equations for the 

liquid layer of thickness d. The equations can be solved and boundary conditions 

applied at the various interfaces to obtain the displacements or speed of motion of 

both the substrate and the layer. Several routes are then possible to obtain the effect of 

the layer on the resonant frequency and damping of the substrate. In the first case a 

load impedance method, which relates the shear stress to the substrate speed at the 

interface, can be used21. Alternatively a perturbation expansion can be adopted about 

the resonant frequency of the unloaded substrate22. Either method is possible, and 

both should provide the same results, although many experimental studies use the 

formalism of the load impedance method. 

 

 The Navier-Stokes equation for a Newtonian liquid and assuming continuity and 

incompressibility, has an equation for fluid flow, 
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where ρf is the density of the fluid, ηf is the viscosity of the fluid, vf is the fluid 

velocity, ω is the angular frequency and a time dependence eiωt has been assumed. 

The substrate displacement us must satisfy the wave equation, 

 

 s
s

s u
c

u
2

2
2 ω−=∇     (2) 

where cs=(µs/ρs)
1/2 is the intrinsic shear speed of the substrate material determined by 

its shear modulus µs and density ρs. Solutions to these equations of motion can be 

sought using velocity and displacement functions of the form, 

 )0,0,)(( ti
ff ezvv ω=     (3) 

and 

 )0,0,)(( ti
ss ezuu ω=     (4) 

Because the substrate is smooth the displacement, Eq. (4), is essentially 1-

dimensional. Substituting Eqs. (3) and (4) into Eqs. (1) and (2) and recognising that 

the general solutions are composed of exponentials gives general solutions, 

 ( ) ( )zikBzikAzv fffff −+= expexp)(   (5) 

and 

 ( ) ( )zikBzikAzu sssss −+= expexp)(    (6) 

where the k vectors are given by kf=(-2i)1/2/δ and ks=ω/cs and the Ai and Bi are 

constants determined by boundary conditions and the fluid wave vector has been 

written using the shear wave penetration depth ( ) 212 ff ωρηδ = . 
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To convert from a general solution to a specific solution boundary conditions must 

be imposed at the upper and lower free surface and at the interface between the 

substrate and the layer. Only the latter of these conditions depends upon the slip or 

no-slip boundary condition and we, therefore, first develop the form of the solution 

using the boundary condition of vanishing shear stress at the upper and lower free 

surfaces of the substrate-fluid layer system, i.e. 
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Using Eqs. (4) and (5) in Eqs. (7) and (8) determines two of the four constants Af, Bf, 

As, and Bs, so that the solutions become, 
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and 

 ( ) ( )[ ]wzkwikAzu ssss +−= cosexp2)(    (10) 

 

The relationship between the two remaining constants Af and As is determined by the 

boundary condition still to be imposed at the substrate-fluid layer interface.  It is 

interesting to note that due to the complex argument in the cosh(), whether or not a 

slip boundary condition is chosen, the fluid velocity will have a damped oscillation 

representing viscous entrainment with a penetration into the (fluid) layer set by the 

shear wave penetration depth δ.  The derivations in this section can be extended to 
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the case of a substrate coated by a viscoelastic layer; both of the cases of slip of a 

liquid or a solid layer on a QCM surface can then be obtained by taking the 

appropriate limits. For completeness, the key equations for a derivation for the 

viscoelastic case are given in appendix A. 

 

IIb.  Surface Mechanical Impedance  

To obtain the usual Kanazawa and Gordon, and Sauerbrey equations we could now 

develop a perturbation expansion about a vanishing thickness liquid layer. The 

alternative, we adopt here, is to use the surface mechanical impedance of the film18,23, 

ZL, defined by, 
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where Ff is the shear force exerted by the film on the substrate per unit area and is 

given by the shear stress, 
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In a linear approximation the relationship between the load impedance and the 

angular frequency shift and dissipation are given by,  
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The dissipation, ∆D, can be related directly to the motional resistance, Rm, and the 

substrate thickness determines the resonant frequency via w=mπcs/ω  with m=1 giving 
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the fundamental frequency of the QCM. Using Eqs. (9)-(12) an expression can be 

developed for the impedance in the following form that is not specific to whether a 

slip or no-slip boundary condition is to be applied, 
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Thus, the surface load impedance is proportional to Af /As so that the sensitivity to the 

precise boundary condition at the substrate-fluid layer interface enters the impedance 

through the relationship between Af and As. Appendix A gives the analogous results 

for a finite viscoelastic layer. 

 

IIc.  Substrate-Layer Interface Boundary Conditions 

No-Slip Boundary Condition 

The no-slip condition imposes the condition that fluid velocity and substrate velocity 

should be equal at the boundary between the substrate and the layer; equivalently the 

displacements can be matched. Using Eqs. (9) and (10) and setting vf(z=0)=iωus(z=0) 

gives, 
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where the superscript no slip has been introduced to remind us that the no-slip 

boundary condition has been used to determine the relationship between the constants 

Af and As. Using Eq. (15) we then obtain the impedance, 
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Slip Boundary Condition 

In an earlier report we used a slip boundary condition introduced by Rodahl and 

Kasemo17 (see also McHale et al18) which related the mis-match in speeds at the 

boundary between the substrate and the layer to the shear stress at the boundary, i.e. 

 ( ) ffsML Fzvzvm ==−= )0()0(χ    (18) 

 where χ is the coefficient of friction between the film and the surface and mML is the 

mass per unit area of a monolayer of the film. In the earlier report18 we introduced an 

s factor defined as s=1/χmML. In contrast, Ellis and Hayward19 have recently 

introduced a slip length b defined by the boundary condition, 
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Performing a Taylor expansion of Eq. (19) about z=0 gives, 
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and with the definition of Ff used in Eq. (12) this gives, 
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Comparing Eq. (21) to Eq. (18) we deduce that s=b/ηf. The relationship between the 

fluid layer velocity gradient extrapolated from the bulk and the slip length b is shown 
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diagrammatically in fig. 2. The slip boundary condition Eq. (18) can therefore be 

regarded as a first order approximation to the slip boundary condition in Eq. (19) so 

that the two slip boundary conditions are consistent with each other. In the case of a 

viscoelastic rather than a liquid layer, the equivalent relation for s is  s=iωb/Gf, where 

Gf is the complex shear modulus (see appendix B). 

 

Applying the Ellis and Hayward19 slip boundary condition (Eq. (19)) to Eqs. (9) and 

(10) gives, 
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which differs from the no-slip case only by a shift of d by b in the cosh() term in the 

denominator of Eq. (22). Using the definition of the surface mechanical impedance 

we obtain,  
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which reduces to the no-slip result when b=0.  

 

In the case that the dimensionless combination characterising the influence of slip 

b/δ is small, the cosh() can be expanded as, 
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and the impedance, Eq. (23), becomes 
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Eq. (25) can be re-written in the form, 
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The factor b/ηf in the denominator of Eq. (26) is the slip factor s. We have previously 

derived Eq. (26) using a harmonic oscillator substrate model coated by a general 

finite viscoelastic layer and have shown that it can be interpreted using a single-loop 

feedback model18; this equation can also be derived from the general interfacial layer 

approach of ref [18]. Appendix B gives the analogous results for a viscoelastic layer 

and hence includes both the solid and liquid limits. 

III.  Discussion 

IIIa.  “Liquid” Mass Layer Additivity 

The idea of a “rigid” liquid mass added to a Kanazawa type entrained liquid response 

is implicit with Eq. (26). To show this rigorously we expand Eq. (26) 
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and consider the layer to be an infinitely deep Newtonian fluid, so that Eq. (17) gives 
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Since (2i)1/2 = 1 + i, Eq. (27) becomes, 
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which after expanding, grouping terms into real and imaginary and using the 

definition of the penetration depth gives, 
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Another view of Eq. (30) is that the impedance for an infinitely deep Newtonian 

liquid using the slip boundary condition, contains the Kanazawa result assuming a 

no-slip boundary condition plus an additional impedance equal to -iωρfb; the 

analogous result for a thin layer of rigid mass is given appendix C. The real part of 

the impedance, Eq. (30), gives the dissipation due to the liquid and since it does not 

include a slip correction factor it is relatively insensitive to the slip length in this 

approximation of small b/δ. In contrast, the imaginary part of the impedance, which 

determines the frequency shift, has a correction factor involving the slip length 

parameter. Using Eq. (13) and the fundamental resonance condition w=πvs/ω, Eq. 

(30) gives, 
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Combining Eq. (32) with the additional factor 2b/δ occurring in Eq. (31) gives, 
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where ∆mf=bρf has been defined. Equation (33) is of the Sauerbrey form for a 

frequency shift due to a rigid “liquid” mass per unit area deposited on a smooth 

substrate (quartz crystal); for the case of a thin mass layer given in appendix C the 

additional term is not of a mass type form and is expected to be a small correction to 

the Sauerbrey result. Equation (30) predicts a dominant first order effect in the 

frequency shift rather than the dissipation, but any conversion of the shear motion in 

the liquid into non-shear motion by, for example, strong roughness or oblique angles 

in the surface roughness or topography, is likely to generate compressional waves 

and hence significant damping of the QCM. 

 

One difficulty with the additional mass interpretation of Eq. (33) would be that a 

positive value for b would give a frequency increase, whereas the added mass of the 

Sauerbrey form should give a frequency decrease. A positive value for the slip 

parameter b places the slip plane into the solid side of the boundary whilst a negative 

value places the slip plane out into the liquid side of the boundary (see fig. 2). 

Diagrammatically, Eqs. (31)-(33) mean that the frequency response of a smooth 

crystal (substrate) with a slip boundary condition and a negative slip parameter b=-|b| 

can be viewed as the sum of the effect of liquid entrainment using a no-slip boundary 

condition plus a “rigid” mass layer of thickness |b| and density ρf (see fig. 3).  Given 

some of the confusion that exists in the literature on acoustic wave sensors and slip, 

it should be emphasised that the development of the equations so far in this work has 

no physical meaning beyond the mathematical condition of a discontinuity in the 

substrate and liquid velocities at the solid-liquid interface. Should such a 

discontinuity occur by some physical mechanism, whether it be a diffuse interface or 

true molecular slip, the equations so far developed should describe the QCM 
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response. However, we would emphasise that the result summarized by Eq. (30) is a 

first order approximation and it may be necessary to use the earlier results prior to 

the expansions via Eqs. (24) and/or Eq. (27). 

 

IIIb.  Negative Slip Length and Trapped Mass  

 Taking the slip length to be negative, the effect of Eq. (33) is to enhance the 

frequency decrease that is observed compared to a system with b=0.  Eq. (30) also 

shows that the existence of a slip parameter does not, to first order, alter the 

dissipation of the QCM compared to what would be expected for a crystal immersed 

in a liquid if the slip parameter vanished. These predictions are consistent with 

experimental results for immersion of a QCM with a small order rough surface in a 

wetting liquid, which give an enhanced frequency decrease, but little change in the 

motional resistance compared to a QCM with a smooth surface13. These features in 

the experimentally observed response correspond to the type of behaviour expected 

with a negative slip parameter b. In fact, Martin has previously argued on physical 

grounds that the effect on the response of a QCM would be primarily in the 

frequency response and that this can be modelled by using an additivity between the 

Kanazawa liquid response and a Sauerbrey term representing the trapped mass of 

liquid (see ref 13 and references therein). The requirement to be satisfied for this to 

occur, is that the lateral scale of the surface roughness should be less than the 

penetration depth; otherwise the trapped liquid may not act as a rigid mass. The 

result in Eqs (31)-(33) would support the additivity argument, and provide an 

indication of under what circumstances this argument might fail. For larger length 

scales of roughness, mode conversion and enhanced damping are more likely to 

occur and the model in section II would not then be appropriate. Moreover, the 
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results in section II do not necessarily imply that roughness accounts for all 

experimental data that show anomalous responses. One further requirement to be 

able to match the application of a slip boundary condition to the response of a rough 

QCM, to the trapped mass argument for such a QCM is to provide a physical 

argument for the magnitude and sign of the slip parameter b. 

 

IIIc.  Slip Length and Interfacial Boundary 

The mathematical development for the response of the QCM uses an essentially 1-

dimensional model, whereas surface roughness or topographic structuring introduces 

a two-dimensional aspect to the problem as the thickness of crystal varies with lateral 

position. In this sub-section we consider how the results for such a QCM surface, for 

small height variations compared to the crystal thickness, might be interpreted using 

the results of the essentially 1-dimensional model. Consider fig. 3, but now imagine 

that the true QCM surface is rough. For simplicity, we show in fig. 3 a dotted line 

giving a step type “roughness” variation in the position of the QCM surface with 

equal lengths for the low and high positions (1:1 mark-space ratio). The average 

position of the surface is the solid horizontal line at z=0 and the surface features vary 

from –A to +A. If we now immerse the QCM then each corrugation of depth 2A 

would contain trapped liquid. Within the slip boundary condition model we can 

imagine that this liquid is spread out across each surface feature as a mass layer of 

thickness A (fig. 4b). The net effect is that the average position of the interface 

moves towards the bulk liquid by a distance A. For this particular geometry, we 

would argue that the slip parameter b would therefore be negative and of magnitude 

A. A similar argument could be made for any other type of model surface roughness, 

such as a sinusoidally varying surface, and so be used to determine the slip parameter 
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magnitude. This interpretation of a negative slip parameter means that the application 

of the slip boundary condition to this problem of surface roughness does not 

represent molecular slip, but does show that a slip boundary condition can convert 

the response of a QCM with a rough surface into an equivalent response for a QCM 

with a smooth surface. There is nothing in this particular application of the slip 

boundary condition that would preclude its use to also describe molecular slip, 

although we would expect that molecular slip would require a positive slip length 

parameter b.  

 

IIId.  Acoustic Reflection Considerations 

The slip model matches boundary conditions at the solid-liquid interface and, with a 

negative b, merely moves the position of that interface out towards the liquid by a 

constant amount; this is illustrated in fig. 4a and fig. 4b. When a QCM is in air (fig. 

4a) the acoustic wave in the substrate will undergo reflections from both the peaks 

and troughs of the QCM’s corrugated upper surface, thus defining two characteristic 

resonant cavity lengths.  Each of these cavities will define resonances of the crystal 

and so give two different resonant frequencies. Provided the depth of the surface 

features is small, adding the waves giving these two resonances will give an average 

resonant frequency modulated by a low frequency variation. In effect, we could view 

the QCM’s upper surface as having an average centre of reflection so that the 

substrate thickness is w. In fig. 4a the path of the acoustic reflection is shown by the 

dotted vertical arrow and this determines the resonant frequency. When the rough 

surface is completely wetted the acoustic reflectivity of the upper solid surface of the 

QCM is the same irrespective of whether the horizontal location (x-position) 

corresponds to a peak or a trough in the surface corrugation/roughness. We can 
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imagine the trapped liquid mass being spread in a uniform film of thickness |b| across 

the peaks and troughs of the QCM’s upper surface (fig. 4b). This results in an overall 

and uniform shift in the average centre of acoustic reflectivity towards the bulk 

liquid phase by an amount |b|. The path of the acoustic reflection therefore increases 

as shown schematically by the solid vertical arrow in fig. 4b. An effective increase in 

the acoustic thickness of the substrate caused by the uniformly spread out trapped 

mass would be expected to result in a larger resonant half-wavelength and so a lower 

resonant frequency. This particular conclusion is to some extent speculative, but the 

change in viewpoint to acoustic reflectivity does help identify a possible implicit 

assumption in the trapped mass model additivity formula (Eq. (31)). 

 

The explicit limitation on the applicability of Eqs. (31)-(33) to rough surfaces is that 

b/δ  be small. However, it is also assumed that the model, is independent of the 

particular point along the x direction, i.e. that a damped shear wave oscillation into 

the liquid begins at the average position of the slip plane no matter what position 

along the x-direction is considered. For surface roughness features which are closely 

spaced this is likely to be true, but as they become further apart it is an assumption 

likely to fail. A further implicit assumption is that the liquid maintains contact with 

the surface features across the QCM, i.e. the surface is completely wetted; if it does 

not the surface reflectivity may become a function of position along the interface. 

One interesting question that arises is whether vapor trapped in surface features 

could be accounted for simply by using Eqs. (31)-(33), but modified by reducing the 

amount of “trapped” liquid13. It is not clear from the slip boundary condition model 

whether the additivity of “liquid” mass will still be valid if this partial penetration by 

liquid occurs. The slip model matches boundary conditions at the solid-liquid 
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interface and merely moves the position of that interface out towards the liquid by a 

constant amount. Figures 4a) and 4b) are an attempt to interpret this movement in 

terms of acoustic reflections and lead to the identification of an important implicit 

assumption. If vapor trapping due to incomplete wetting occurs, acoustic reflections 

from the troughs of the surface features will be due to a solid-air interface whilst 

those from the peaks will be due to a solid-liquid interface. Since the acoustic 

reflectivity of the solid-air interface is significantly higher than that of a sold-liquid 

interface, this may limit the slip model assumption that all positions along the x-

direction see an effective slip parameter of the same value; this could be a particular 

problem if the reflection was dominated by surface troughs which possessed a solid-

vapor interface.  In such circumstances, the validity of the additivity result  (Eq. (31)) 

may be questionable and the trapped mass viewpoint may not then be applicable, in 

some circumstances, to hydrophobic rough surfaces. The potential complexity of this 

effect is one reason why we have qualified the results in section II of this article to be 

applicable to the complete wetting case. 

 

IV.  Conclusion 

A slip boundary condition has been implemented via the wave equations for a QCM 

covered with a finite liquid layer. The response of the QCM on immersion in water 

assuming a slip length, b, has been obtained and to first order in b/δ , and assuming no 

mode conversion, it has been shown that the frequency response can be viewed 

rigorously as a liquid response with an additional component due to a “rigid liquid” 

mass; to first order the slip boundary condition does not change the dissipation 

beyond what would be expected from a no-slip boundary condition.  For the “rigid 

liquid” mass to enhance the frequency decrease the slip length must be negative so 
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that the slip plane is located on the liquid side of the average surface of the QCM. It 

has been argued that the slip boundary condition with a negative slip length could 

model the liquid response of a QCM with a rough surface. In this application of the 

slip boundary condition the results of the model are equivalent to a trapped mass 

model provided the liquid wets the whole of the rough surface. The possible 

importance of vapor trapping altering acoustic reflectivity of wetted versus non-

wetted portions of the interface has been identified, although it remains unclear 

whether this could invalidate the trapped mass argument for hydrophobic rough 

surfaces. 
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Appendix A – Fluid Velocity and Impedance for a Viscoelastic Layer 

In this appendix we outline the key changes to Eqs. (1)-(9) required to obtain the fluid 

velocity when the fluid is regarded as a viscoelastic layer rather than a Newtonian 

liquid. In the case of a viscoelastic layer, the Navier-Stokes equation for the fluid (Eq. 

(1)) is modified to 

 ff
f

f
viv

i

G
ω

ωρ
=∇2     (A1) 

where Gf is the complex shear modulus and has liquid and solid limits of iωηf and µf. 

Within the equation for the fluid velocity (Eq. (5)) the wavevector kf becomes, 
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where the complex penetration depth is defined by, 
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which in the liquid limit becomes equal to the usual shear wave penetration depth. 

The boundary condition Eq. (7) becomes, 
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The solution for the fluid velocity (Eq. (9)) becomes 
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In the evaluation of surface mechanical impedance the shear stress (Eq. (12)) 

becomes,  
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so that the general form for the impedance (Eq. (15)) becomes, 
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The key differences in Eq. (A7) compared to Eq. (15) are the replacement of the 

penetration depth by the complex penetration depth in the exp() and sinh() factors 

and the inclusion of a factor which is the ratio of complex penetration depth to 

penetration depth. Equation (A7) is a general form in the sense that it has not yet had 

a boundary condition imposed at the substrate-layer interface. 
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Appendix B – Slip Length Parameter and a Viscoelastic Layer 

In this appendix the effect of the slip boundary condition on a viscoelastic layer is 

detailed. In the no-slip boundary condition case the relation between the Af and As 

coefficients (Eq. (16), becomes, 
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which gives the impedance, 
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The equivalent results derived by imposing the Hayward and Ellis19 slip boundary 

condition (Eq. (19)) are, 
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and 
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Expanding the denominator we obtain 
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where ZL
slip and ZL

no slp are defined by Eq. (B2) and (B4) and the s parameter for the 

viscoelastic layer is given by s=iωb/Gf, 

 

 
fG

bi
s

ω=     (B6) 

We note that the McHale et al18 and Ellis and Hayward19 slip boundary conditions 

can be related from the Taylor expansion Eq. (20) and the shear stress Eq. (A6) and 

that doing so gives Eq. (B6). 
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Appendix C – Slip Parameter and Thin Rigid Mass Limit  

In the case of a thin “rigid” mass layer we find from appendix B, 

 diZ f
slipno

L ωρ≈    (C1) 

which is the Sauerbrey mass response and expanding the denominator in Eq. (B5) 

gives, 
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where µf is the solid limit of the shear modulus Gf. Thus, the usual Sauerbrey response 

is modified by an additional term. To gain insight into the additional term in Eq. (C2), 

we can rewrite Eq. (C2) as, 
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where the wavelength in the fluid has been defined as, 
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For small slip length and layer thickness compared to the wavelength (Eq. (C4)), Eq. 

(C3) shows that the correction to the Sauerbrey equation is small. 
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Figure Captions 

 

Figure 1 Definition of axes for quartz crystal substrate with a liquid overlayer. 

 

Figure 2 Extrapolation of fluid speed gradient from the bulk liquid and the 

relationship to the slip parameter b.  

 

Figure 3 Diagrammatic interpretation of Eqs. (31)-(33). The frequency response of a 

smooth QCM to immersion in water is treated by the slip boundary 

condition as a perfect liquid entrainment by a smooth crystal with a no-slip 

boundary condition plus an additional component equal to a layer of “rigid 

water” of thickness |b|. The dotted lines indicate a hypothetical “rough” 

surface whose average position lies at z=0. 

 

Figure 4 Trapped mass viewed as a movement of the average centre of reflection of 

the QCMs upper surface. a) The unloaded QCM has a resonant frequency 

determined by the acoustic reflection shown the dotted arrow, b) the 

trapped liquid mass in the surface features is viewed as increasing the 

thickness of the substrate at both the trough and crest positions of the 

roughness by an equal amount b and so increasing the effective reflection 

path by |b| as shown by the solid arrow. 
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Figure 1 Definition of axes for quartz crystal substrate with a liquid overlayer. 
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McHale et al, “Surface Roughness and Interfacial Slip Boundary Condition for Quartz Crystal Microbalances” 

Figure 2 Extrapolation of fluid speed gradient from the bulk liquid and the relationship to the slip parameter b.  

 
 

vf 

z 

z=0 

z=-b 



 31 

McHale et al, “Surface Roughness and Interfacial Slip Boundary Condition for Quartz Crystal Microbalances” 
 
Figure 3 Diagrammatic interpretation of Eqs. (31)-(33). The frequency response of a smooth QCM to immersion in water is treated by the slip 

boundary condition as a perfect liquid entrainment by a smooth crystal with a no-slip boundary condition plus an additional component 

equal to a layer of “rigid water” of thickness |b|. The dotted lines indicate a hypothetical “rough” surface whose average position lies at 

z=0. 
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McHale et al, “Surface Roughness and Interfacial Slip Boundary Condition for Quartz Crystal Microbalances” 
 
Figure 4 Trapped mass viewed as a movement of the average centre of reflection of the QCMs upper surface. a) The unloaded QCM has a 

resonant frequency determined by the acoustic reflection shown the dotted arrow, b) the trapped liquid mass in the surface features is 

viewed as increasing the thickness of the substrate at both the trough and crest positions of the roughness by an equal amount b and so 

increasing the effective reflection path by |b| as shown by the solid arrow. 
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